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 I. INTRODUCTION  

Let  𝑋 be a Hausdorff topological space and 𝑀(𝑋, 𝐸) be the space of all measurable function from 𝑋 into 𝐸 and 𝐶(𝑋, 𝐸) be the 
vector space of 𝑀(𝑋, 𝐸) consisting of the continuous function 𝑓 from 𝑋 into 𝐸. Let 𝑉 be a set of non-negative upper- semi continuous 
functions on 𝑋. If 𝑉 is a set of weights on 𝑋 such that given any 𝑥 ∈ 𝑋, there is some 𝑣 ∈ 𝑉 for which 𝑣(𝑥) > 0. We write𝑉 > 0. 

  A set 𝑉 of weights on 𝑋 is said to be directed upward provided for every pair 𝑢!, 𝑢" in 𝑉 and 𝛼 > 0 there exists 𝑣 ∈ 𝑉 such 
that 𝛼𝑢# ≤ 𝑣 (point-wise on 𝑋) for 𝑖 = 1,2. 

By a system of weights, we mean a set 𝑉 of weights on 𝑋 with additionally satisfies 𝑉 > 0. Let 𝑐𝑠(𝐸) be the set of all continuous 
functions from 𝑋 into 𝐸., 

If 𝑉	is a system of weights on 𝑋 then the pair(𝑋, 𝑉) is called the weighted topological system. Associated with each weighted topological 
system (𝑋, 𝑉), we have the weighted spaces of continuous 𝐸 −valued functions defined as: 

𝑀𝑉$(𝑋, 𝐸) = {𝑓 ⊞ 𝑔	 ∈ 	𝑀(𝑋, 𝐸) ⊞𝑀(𝑋, 𝐸): 𝑣𝑞(𝑓 ⊞ 𝑔)vanishes	at	𝑔	on	𝑋	for	each	𝑣 ∈ 	V, 𝑞 ∈ 𝑐s(𝐸)} 

𝑀𝑉%(𝑋, 𝐸) = {𝑓 ⊞ 𝑔 ∈ 	𝑀(𝑋, 𝐸)⊞𝑀(𝑋, 𝐸): 𝑣𝑞(𝑓 ⊞ 𝑔)	in	𝐿%	for	all	𝑣 ∈ 	V, 𝑞 ∈ 𝑐s(𝐸)} 

𝑀𝑉&(𝑋, 𝐸) = {𝑓 ⊞ 𝑔 ∈ 	𝑀(𝑋, 𝐸)⊞𝑀(𝑋, 𝐸): 𝑣𝑞Q(𝑓 ⊞ 𝑔)(𝑥)R	is	bounded	in	E	for	all	𝑣 ∈ 	V, 𝑞 ∈ 𝑐s(𝐸)} 

Let 𝑣 ∈ 	V, q ∈ 	cs(E) and 𝑓 ⊞ 𝑔	 ∈ 	𝑀(𝑋, 𝐸)⊞𝑀(𝑋, 𝐸). If we define ‖𝑓 ⊞ 𝑔‖',) = sup	{(∫*(𝑣(𝑥)𝑞(𝑓 ⊞ 𝑔)(𝑥))%𝑑𝜇)
!
" for all 𝑥 ∈

𝑋}, then ‖. ‖' can be regared as a semi norm on either 𝑀𝑉$(𝑋, 𝐸) ⊞𝑀𝑉$(𝑋, 𝐸),𝑀𝑉&(𝑋, 𝐸)⊞𝑀𝑉&(𝑋, 𝐸) and the family  {‖. ‖',): 𝑣 ∈
𝑉, 𝑞 ∈ 𝑐𝑠(𝐸)} of semi norms defines a Hausdorff locally convex topology on each of these spaces. This topology will be dented by 𝑤' 
and the vector spaces 𝑀𝑉$(𝑋, 𝐸) and 𝑀𝑉&(𝑋, 𝐸) endowed with 𝑤'  are called the weighted locally convex space of vector-valued 
continuous functions. It has a basis of closed absolutely convex neighborhoods of the origin of the form, 

𝐵',) = {𝑓 ⊞ 𝑔 ∈ 	𝑀𝑉&(𝑋, 𝐸)⊞𝑀𝑉&(𝑋, 𝐸):	‖𝑓 ⊞ 𝑔‖',) ≤ 1} 

Also, 𝑀𝑉$(𝑋, 𝐸) is a closed subspace of 𝑀𝑉&(𝑋, 𝐸). 

1.1.Functions inducing tensor sum operators on weighted spaces of measurable functions. 

In this section, let us investigate the Functions inducing tensor sum operators on weighted spaces of measurable functions. 
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Theorem:1.1.1. Let  𝜑: 𝑋 → 𝑋 and 𝜋+ : 𝑋 → ℂ be a measurable functions. Then (𝐶, ⊞	𝑀-# 	)	(𝑓 ⊞ 𝑔) is a tensor sum operator for 
every 𝑡 ∈  ℝ ,	𝑓 ⊞𝑔 ∈ 𝑀𝑉$(𝑋) ⊞ 𝑀𝑉$(𝑋) iff  𝑉c𝐶, 	⊞	𝑀-#c ≤ 𝑉. 

Proof:	First suppose 𝑉c𝐶, 	⊞	𝑀-#c ≤ 𝑉.  Then For every 𝑣 ∈ 𝑉, Then for all  𝑣 ∈ 𝑉	, there exist 𝑢 ∈ 𝑉 such that 𝑣c𝐶, 	⊞	𝑀-# 	c ≤
𝑢	(point wise on 𝑋). We show that  𝐶, ⊞	𝑀-# 	 is a continuous linear operator on 𝑀𝑉$(𝑋) ⊞𝑀𝑉$(𝑋). Clearly,  𝐶, ⊞	𝑀-# 	 is  linear 
on 𝑀𝑉$(𝑋)⊞𝑀𝑉$(𝑋). In order to prove the continuity of  𝐶, ⊞	𝑀-# 	 on  𝑀𝑉$(𝑋)⊞𝑀𝑉$(𝑋),  it is enough to show that 𝐶, ⊞	𝑀-# 	 
is continuous at origin. For this, suppose 𝑓. ⊞𝑔.	be a net in 𝑀𝑉$(𝑋) ⊞𝑀𝑉$(𝑋) such that 𝑃'(𝑓. ⊞𝑔.) → 0,	for every 𝑣 ∈ 𝑉. 

Now, 

𝑃'(𝐶,	𝑓. ⊞𝑀-#𝑔.) 	= 	𝑃'(𝐶,	𝑓.) ⊞ 𝑃'(𝑀-#𝑔.) for all t ∈ 	ℝ.	 

             	= 𝑃'(	𝑓. ∘ 𝜑(𝑥)) ⊞ 𝑃'(𝜋+(𝑥)𝑔.(𝑥)) 

            		= (∫*(𝑣(𝑥)𝑞(	𝑓.(𝜑(𝑥)))
%𝑑𝜇)

!
" 	⊞ (∫*(𝑣(𝑥)𝑞(𝑒

+/(1)𝑔.(𝑥)))%𝑑𝜇)
!
" 

            	= (∫*(𝑣(𝑥)𝑞(	𝑓.(𝑥)))
%𝑑𝜇)

!
" 	⊞ (∫*(𝑣(𝑥)𝑞(𝑒

+/(1)𝑔.(𝑥)))%𝑑𝜇)
!
" 

           = (∫*(𝑢(𝑥)𝑞(	𝑓.(𝑥)))
%𝑑𝜇)

!
" 	⊞ (∫* h𝑢(𝑥)𝑞Q𝑔.(𝑥)Ri

%
𝑑𝜇)

!
" 

𝑎𝑠	𝑡 → 0 

              = 𝑃3(	𝑓. ⊞ 𝑔.) → 0 

This proves the continuity of  𝐶, 	⊞	𝑀-# at origin and hence 𝐶, 	⊞	𝑀-# is continuous on 𝑀𝑉$(𝑋) 	⊞ 	𝑀𝑉$(𝑋). 

 Conversely, suppose 𝐶, 	⊞	𝑀-# is continuous linear operator on 𝑀𝑉$(𝑋) 	⊞ 	𝑀𝑉$(𝑋).We shall show that 𝑉c𝐶, 	⊞	𝑀-#c ≤ 𝑉. Let 𝑣 ∈
𝑉	. Since 𝐶, 	⊞	𝑀-+  is continuous origin, there exist 𝑢 ∈ 𝑉	  such that (𝐶, 	⊞	𝑀-#)(𝐵3) ⊆ 𝐵'. We claim that 𝑣c𝐶, 	⊞	𝑀-#c ≤ 2𝑢. 
Take  𝑥$ ∈ 𝑋 and set 𝑢(𝑥$) = 𝜀. In case 𝜀 > 0,  𝑁 = {𝑥 ∈ 𝑋: 𝑢(𝑥) < 2𝜀}  is an open neighborhood of 𝑥$. Then there exists 𝑓 ⊞ 𝑔 ∈
𝑀𝑉$(𝑋) 	⊞ 	𝑀𝑉$(𝑋) such that 0 ≤ 𝑓 ⊞ 𝑔 ≤ 1, and 𝑓 ⊞ 𝑔(𝑋 − 𝑁) = 0. 

 Let  ℎ = (2𝜀)4!(	𝑓 ⊞ 𝑔	). Then clearly ℎ ∈ 𝐵3. Since  (	𝐶, 	⊞	𝑀-#)(	𝐵3	) ⊆ 𝐵', we have (	𝐶, 	⊞	𝑀-# 	)	ℎ ∈ 𝐵'  and this yields that 
𝑣	(𝑥)c(	𝐶, 	⊞	𝑀-# 	)(	𝑥	)c|	ℎ(	𝑥	)| ≤ 1	, for all 𝑥 ∈ 𝑋 . From this it follows that 𝑣(	x	)c(	𝐶, 	⊞	𝑀-#)(	𝑥	)c|	𝑓 ⊞ 𝑔	(	𝑥	)| ≤ 2𝜀	, for all 
∈ 𝑋 .  

Now suppose 𝑢(	𝑥$	) = 0	and that 𝑣(	𝑥$)c(	𝐶, 	⊞	𝑀-# 	)(	𝑥$	)c > 0   If we put that                       𝜀 = 𝑣(	𝑥$)c(	𝐶, 	⊞	𝑀-#)(	𝑥$)c  it is 
not greater than two and set ,  𝑁 = {𝑥 ∈ 𝑋: 𝑢(𝑥) < 𝜀}  then 𝑁 would be an open neighborhood of 𝑥$ and we could again find 𝑓 ⊞ 𝑔 ∈
𝑀𝑉$(𝑋)⊞ 	𝑀𝑉$(𝑋) such that 0 ≤ 𝑓 ⊞ 𝑔 ≤ 1, and 𝑓 ⊞ 𝑔(𝑥$) = 1 and 𝑓 ⊞ 𝑔(𝑋 − 𝑁) = 0.Now let ℎ = 𝜀4!(	𝑓 ⊞ 𝑔	).  Then clearly 
ℎ ∈ 	𝐵3  and (𝐶, 	⊞	𝑀-#)(ℎ) ∈ 𝐵'  . Hence 	𝑣(𝑥)c(	𝐶, 	⊞	𝑀-# 	)(	𝑥	)c|	ℎ(	𝑥	)| ≤ 1	for all  𝑥 ∈ 𝑋  . This implies that 	𝑣(𝑥)c(	𝐶, 	⊞

	𝑀-# 	)(	𝑥	)c|	𝑓 ⊞ 𝑔(	𝑥	)| ≤ 𝜀	, for all 𝑥 ∈ 𝑋. From this it follows that, 𝑣(𝑥$)c(	𝐶, 	⊞	𝑀-# 	)(	𝑥$	)c ≤
'(1$)6(	7%	⊞	9&# 	)(	1$	)6

"
  which is 

impossible. This proves our claim and hence the proof is complete. 

 Now we shall characterize tensor sum operators on 𝑀𝑉$(𝑋, 𝐸)⊞ 	𝑀𝑉$(𝑋, 𝐸) induced by scalar-valued and vector valued functions. 

1.2 Characterization of tensor sum operator  

In this section, let us investigate the Characterization of tensor sum operator  

Theorem: 1.2.1. Let  : 𝑋 → 𝑋 and 𝜋+ : 𝑋 → ℂ be a measurable function. Then (𝐶, ⊞	𝑀-# 	)	(𝑓 ⊞ 𝑔) is a tensor sum operator for every 
𝑡 ∈  ℝ ,	𝑓 ⊞𝑔 ∈ 𝑀𝑉$(𝑋, 𝐸) ⊞ 𝑀𝑉$(𝑋, 𝐸) iff  𝑉r𝐶, 	⊞	𝑀-#r ≤ 𝑉. 



LIPS International Journal of Interdisciplinary Research Volume 1, Issue 2, October 2024 - SPECIAL ISSUE                
Proceedings ISBN 978-93-94174-47-4 “International Conference on interdisciplinary research, education and job scope 
 
 

3 
 

Proof:  Similar to proof of theorem 1.1.1. 

Theorem:1.2.2.  Let 𝐸 be a (locally multiplicative convex) lmc algebra with unit 𝑒 and let  𝜑 : 𝑋 → 𝐸 and 𝜋+ : 𝑋 → ℂ  be a bounded 
measurable function. Then (𝐶, ⊞	𝑀-# 	)	(𝑓 ⊞ 𝑔) is a tensor sum operator on  𝑡 ∈  ℝ ,	𝑓 ⊞𝑔 ∈ 𝑀𝑉$(𝑋, 𝐸) ⊞ 𝑀𝑉$(𝑋, 𝐸) iff  𝑉% ∘ (𝜑 ⊞
𝜋+) ≤ 𝑉	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑝 ∈ 𝑃. 

Proof: Suppose 𝑉% ∘ (𝜑 ⊞ 𝜋+) ≤ 𝑉, for all 𝑝 ∈ 𝑃. Then for all 𝑣 ∈ 	𝑉, there exists 𝑢 ∈ 	𝑉	such that 𝑣% ∘ (𝜑 ⊞ 𝜋+) ≤ 𝑢	(point wise on 
𝑋). We shall prove that the mapping  𝜑 : 𝑋 → 𝐸 and 𝜋+ : 𝑋 → ℂ  gives rise to a linear transformation 𝐶, ⊞	𝑀-# 	from 𝑀𝑉$(𝑋, 𝐸) ⊞ 
𝑀𝑉$(𝑋, 𝐸) itself defined as 𝐶,𝑓 = 𝜑𝑓	𝑎𝑛𝑑	𝑀-#𝑔 =	𝜋+𝑔 for every 𝑓 ⊞𝑔 ∈ 𝑀𝑉$(𝑋, 𝐸) ⊞ 𝑀𝑉$(𝑋, 𝐸), where the product is point-wise 
continuous linear operator on 𝑀𝑉$(𝑋, 𝐸), we shall establish the continuity of 𝐶, ⊞𝑀-# at the origin. For this, let {𝑓. ⊞𝑔.}	 be a net 
in 𝑀𝑉$(𝑋, 𝐸) 	⊞ 	𝑀𝑉$(𝑋, 𝐸) such that for all 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃,  𝑃',)(𝑓. ⊞𝑔.) → 0. 

Then  

𝑃',)(𝐶,	𝑓. ⊞𝑀-#𝑔.) = 𝑃',)(𝐶,	𝑓.) ⊞ 𝑃',)𝑀-#𝑔.) for all t ∈ 	ℝ. 

              = 𝑃',)(	𝑓. ○ 𝜑(𝑥)) ⊞ 𝑃',)(𝜋+(𝑥)𝑔.(𝑥)) 

             	= (∫*(𝑣(𝑥)𝑞(	𝑓.(𝜑(𝑥))))
%𝑑𝜇)

!
" 	⊞ (∫*(𝑣(𝑥)𝑞(𝑒

+/(1)𝑔.(𝑥)))%𝑑𝜇)
!
" 

                    = (∫*(𝑢(𝑥)𝑞(	𝑓.(𝑥)))
%𝑑𝜇)

!
" 	⊞ (∫* h𝑢(𝑥)𝑞Q𝑔.(𝑥)Ri

%
𝑑𝜇)

!
"  

       as 𝑡 → 0 

         = 𝑃3,)(	𝑓.)	⊞ 𝑃3,)(	𝑔.) 

         			= 𝑃3,)(	𝑓. ⊞ 𝑔.) → 0 

This proves that (𝐶, ⊞	𝑀-# 	)  is continuous origin and  hence a continuous linear operator on 𝑀𝑉$(𝑋, 𝐸) ⊞ 𝑀𝑉$(𝑋, 𝐸). 

Remark:1.2.3.Note that if 𝜑 : 𝑋 → 𝑋 and 𝜋+ : 𝑋 → ℂ be a bounded measurable complex valued (or vector-valued) functions on 𝑋 then  
clearly (𝐶, ⊞	𝑀-# 	)	(𝑓. ⊞𝑔.) is a tensor sum operator on  

𝑀𝑉$(𝑋) ⊞ 𝑀𝑉$(𝑋)	(	𝑜𝑟	𝑀𝑉$(𝑋, 𝐸) ⊞ 𝑀𝑉$(𝑋, 𝐸) for any system of weights 𝑉. 

         If 𝑋 is a system of weights generated by the characteristic functions of compact sets, then it turns out that every continuous map 
induces a tensor sum operators on 𝑀𝑉$(𝑋) ⊞ 𝑀𝑉$(𝑋)	(	𝑜𝑟	𝑀𝑉$(𝑋, 𝐸) ⊞ 𝑀𝑉$(𝑋, 𝐸) for any system of weights 𝑉. 

Theorem:1.2.4. Let 𝑋 be a completely  Hausdorff space and let 𝑉 = {𝜆:;: 𝜆 > 0	𝑎𝑛𝑑	𝐾 ⊂ 𝑋, 𝑋 is compact}. 

i) Every bounded 𝜑 : 𝑋 → 𝑋 and 𝜋+ : 𝑋 → ℂ on 𝑀𝑉$(𝑋) ⊞ 𝑀𝑉$(𝑋) 
ii) Every bounded 𝜑 : 𝑋 → 𝑋 and 𝜋+ : 𝑋 → 𝐸 be a lmc with jointly continuous operator induces a tensor sum operator on 𝐶, 

⊞	𝑀-# 	 on 𝑀𝑉$(𝑋, 𝐸) ⊞ 𝑀𝑉$(𝑋, 𝐸). 

Proof: Similar proof of theorem:1.2.2 

Corollary:3.9.5.Let 𝑋 have the discreate topology and 𝑉 = {𝜆:;: 𝜆 ≥ 0	𝑎𝑛𝑑	𝐾 ⊂ 𝑋, 𝑋 is a finite set}. Then every function  𝜑: 𝑋 → 𝑋 
and 𝜋+ : 𝑋 → ℂ induces a tensor sum operator (𝐶, ⊞	𝑀-# 	)(𝑓 ⊞ 𝑔) on 𝑀𝑉$(𝑋) ⊞ 𝑀𝑉$(𝑋)( or 𝑀𝑉$(𝑋, 𝐸) ⊞ 𝑀𝑉$(𝑋, 𝐸). 

1.3. Dynamical system induced by tensor sum operators  on weighted locally convex space of measurable functions 
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In this section, let us investigate the Dynamical system induced by tensor sum operators  on weighted locally convex space of measurable 
functions 

Theorem :1.3.1.Let 𝑈	 and 𝑉 be an arbitrary system of weights on 	𝐺 and let 𝜑 : 𝑋 → 𝑋 and 𝜋+ : 𝑋 → ℂ be a continuous function. Then 
𝐶,𝑓 ⊞	𝑀-# 	𝑔 is a tensor sum operator for every 𝑡 ∈ ℝ and 𝑓 ⊞ 𝑔 ∈ 	𝑀𝑉$(𝑋) ⊞ 𝑀𝑉$(𝑋) iff  𝑉r𝐶, 	⊞	𝑀-# 	r ≤ 𝑈. 

Proof: To show that 𝐶,𝑓 ⊞	𝑀-#𝑔 is a tensor sum operator. It is enough to prove 𝐶,𝑓 ⊞	𝑀-# 	𝑔 is continuous at origin. Let 𝑣 ∈ 𝑉 and 
𝐵' be a neighborhood of the origin in 	𝑀𝑉&(𝑋) ⊞ 𝑀𝑉&(𝑋). Then by the given condition, there exists 𝑢 ∈ 𝑈 such that 𝑣r𝐶, 	⊞	𝑀-# 	r ≤
𝑢. Now we claim that (𝐶, ⊞	𝑀-#)(𝐵3) ⊆ 𝐵' , where 𝐵3  is neighborhood of the origin in 𝑀𝑈&(𝑋) ⊞ 𝑀𝑈&(𝑋)	(𝑜𝑟	𝑀𝑉&(𝑋, 𝐸) ⊞ 
𝑀𝑉&(𝑋, 𝐸)). 

Let 𝑓 ⊞ 𝑔 ∈ 𝐵3. Then we have  

r𝐶,	𝑓 ⊞𝑀-#𝑔r𝒗 = r𝐶,	𝑓(𝑥)r ⊞ r𝑀-#𝑔(𝑥)r	           

                     = (∫*(𝑣(𝑥)𝑞(‖𝑓 ○ 𝜑(𝑥)‖))
%𝑑𝜇)

!
" 	⊞ (∫*(𝑣(𝑥)𝑞(‖𝜋+(𝑥)𝑔(𝑥)‖))

%𝑑𝜇)
!
" 

= (∫*(𝑣(𝑥)𝑞(‖𝑓(𝜑(𝑥))‖))
%𝑑𝜇)

!
" 	⊞ (∫*(𝑣(𝑥)𝑞(𝑒

|+|‖/‖'‖𝑔(𝑥)‖)%𝑑𝜇)
!
"    

														≤ (∫*(𝑢(𝑥)𝑞(‖𝑓(𝑥)‖))
%𝑑𝜇)

!
% 	⊞ (∫*(𝑢(𝑥)𝑞(‖𝑔(𝑥)‖))

%𝑑𝜇)
!
% 

≤ ‖𝑓(𝑥) ⊞ 𝑔(𝑥)‖ 

            ≤ ‖(𝑓 ⊞ 𝑔)(𝑥)‖   ≤ 1.          

This proves that (𝐶, 𝑓 ⊞	𝑀-#𝑔	) ∈ 𝐵' and  hence 𝐶, ⊞𝑀-# is a tensor sum operator. 

Corollary:1.3.2.  Every bounded measurable function  𝜑: 𝑋 → 𝑋 and 𝜋+ : 𝑋 → ℂ induces a tensor sum operator 𝐶, ⊞𝑀-# on 𝑀𝑉&(𝑋) 
⊞ 𝑀𝑉&(𝑋)	(𝑜𝑟	𝑀𝑉&(𝑋, 𝐸) ⊞ 𝑀𝑉&(𝑋, 𝐸))	for a system of weights 𝑉 on 𝑋. 

Proof: 

𝐶,  𝑓 ⊞	𝑀-#𝑔  is bounded, there exists 𝑚 > 0  such that c(𝐶,	𝑓 ⊞𝑀-#𝑔)(𝑥)c ≤ 𝑚  for all 𝑥 ∈ 𝑋 . Let 𝑣 ∈ 𝑋.  Then we have  
𝑣(𝑥)c𝐶,	𝑓 ⊞𝑀-#𝑔c ≤ 𝑚𝑣(𝑥) for all 𝑥 ∈ 𝑋. 

 Hence by the above theorem  𝐶,𝑓 ⊞	𝑀-#𝑔 is a tensor sum operator on 𝑀𝑉&(𝑋) ⊞ 𝑀𝑉&(𝑋)	(𝑜𝑟	𝑀𝑉&(𝑋, 𝐸) ⊞ 𝑀𝑉&(𝑋, 𝐸)). 

Note:1.3.3. Let ℎ ∈ 𝐹&(ℝ).	Define 𝜋+ : ℝ → 𝐵(𝑇) as 𝜋+(𝑤) = 𝑒+/(?) for all 𝑡, 𝑤 ∈ 	ℝ. 

Theorem:1.3.4. Let ℎ ∈ 𝐹&(ℝ). For each 𝑡 ∈ ℝ and let ∇/: ℝ	 × 𝑀𝑉&(ℝ, 𝑇) ⊞ 𝑀𝑉&(ℝ, 𝑇) → 𝑀(ℝ, 𝑇)⊞ 	𝑀(ℝ, 𝑇) be the function 
defined by ∇/(𝑡, 𝑓 ⊞ 𝑔) = 	𝐶,# ⊞𝑀-#(𝑓 ⊞ 𝑔) for all 𝑡 ∈ ℝ and 𝑓 ⊞ 𝑔 ∈ 	𝑀𝑉&(ℝ, 𝑇) ⊞ 𝑀𝑉&(ℝ, 𝑇).  Then ∇/ is a linear dynamical 
system on 𝑀𝑉&(ℝ, 𝑇) ⊞ 𝑀𝑉&(ℝ, 𝑇). 

Proof: 

Since 𝐶,# ⊞𝑀-# is a tensor sum operator on 𝑀𝑉&(ℝ, 𝑇) ⊞ 𝑀𝑉&(ℝ, 𝑇) for all 𝑡 ∈ 	ℝ	and 𝑓 ⊞ 𝑔 ∈ 	𝑀𝑉&(ℝ, 𝑇) ⊞ 𝑀𝑉&(ℝ, 𝑇). We can 
conclude that ∇/(𝑡, 𝑓 ⊞ 𝑔) ∈ 	𝑀𝑉&(ℝ, 𝑇)  ⊞  𝑀𝑉&(ℝ, 𝑇) . Whenever 𝑡 ∈ 	ℝ  and 𝑓 ⊞ 𝑔 ∈ 	𝑀𝑉&(ℝ, 𝑇)  ⊞  𝑀𝑉&(ℝ, 𝑇) . Thus ∇/  is a 
function from ℝ	 ×𝑀𝑉&(ℝ, 𝑇) ⊞ 𝑀𝑉&(ℝ, 𝑇) → 𝑀(ℝ, 𝑇)⊞ 	𝑀(ℝ, 𝑇). It can be easily seen that  ∇/(0, 𝑓 ⊞ 𝑔) = 𝑓 ⊞ 𝑔 and ∇/(𝑡 +
𝑠, 𝑓 ⊞ 𝑔) = ∇/(𝑡,	∇/(𝑠, 𝑓 ⊞ 𝑔). 

 In order to show that ∇/ is a dynamical system on 𝑀𝑉&(ℝ, 𝑇) ⊞ 𝑀𝑉&(ℝ, 𝑇). It is enough to show that ∇/ separately continuous map. 
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 Let us first prove the continuity on ∇/ in the first argument. Let {𝑡@ → 𝑡}. Then |𝑡@ − 𝑡| → 0 as 𝑛 → ∞, we shall show that  

∇/(𝑡@, 𝑓 ⊞ 𝑔) →	∇/(𝑡, 𝑓 ⊞ 𝑔) ∈ 𝑀𝑉&(ℝ, 𝑇) ⊞ 𝑀𝑉&(ℝ, 𝑇). 

Let 𝑣 → 𝑉. Then,    

 𝑃'(∇/(𝑡@, 𝑓 ⊞ 𝑔) − ∇/(𝑡, 𝑓 ⊞ 𝑔))' 

                                   = 𝑃 �h𝐶,#( ⊞𝑀-#(i (𝑓 ⊞ 𝑔) − Q𝐶,# ⊞𝑀-#R	(	𝑓 ⊞ 𝑔)�
'
 

                                   = �∫*(𝑣(𝑤)𝑞(𝐶,#((w)𝑓(𝑤)	⊞𝑀-#(
(𝑤)𝑔(𝑤)))%𝑑𝜇)

!
"� −            

                                       �∫*(𝑣(𝑤)𝑞(𝐶,#(w)𝑓(𝑤)	⊞𝑀-#(𝑤)𝑔(𝑤)))
%𝑑𝜇)

!
"�       

                                  = �∫*(𝑣(𝑤)𝑞(𝑓(𝜑+@(𝑤)) ⊞ 𝜋+@(𝑤)𝑔(𝑤)))
%𝑑𝜇)

!
"�        

                                    +�∫*(𝑣(𝑤)𝑞(𝑓(𝜑+(𝑤)𝑓(𝑤)⊞ 𝜋𝑡(𝑤)𝑔(𝑤)))%𝑑𝜇)
!
"�     

                                  ≤ �∫*(𝑣(𝑤)𝑞(𝑓(𝜑+@(𝑤)) − 𝑒
+(/'𝑔(𝑤)))%𝑑𝜇)

!
"�     

                                        +�∫*(𝑣(𝑤)𝑞(𝑓(𝜑+(𝑤)) − 𝑒
+(/'𝑔(𝑤)))%𝑑𝜇)

!
"�                                                      			             .                   →

0	𝑎𝑠	|𝑡@ − 𝑡| → 0. 

Let 𝑓. ⊞𝑔. be a net in 𝑀𝑉&(ℝ, 𝑇) ⊞ 𝑀𝑉&(ℝ, 𝑇) such that 𝑓. ⊞𝑔. 	→ 𝑓 ⊞ 𝑔 in 𝑀𝑉&(ℝ, 𝑇) ⊞ 𝑀𝑉&(ℝ, 𝑇). Then 𝑞(𝑓. ⊞𝑔. 	− 𝑓 ⊞
𝑔	)𝒗 → 0 for all 𝑣 ∈ 𝑉. We shall show that ∇/(𝑡, 𝑓. ⊞𝑔.) → 	∇/(𝑡, 𝑓 ⊞ 𝑔) in 𝑀𝑉&(ℝ, 𝑇) ⊞ 𝑀𝑉&(ℝ, 𝑇). 

   𝑃(∇/(𝑡, 𝑓. ⊞𝑔.) − ∇/(𝑡, 𝑓 ⊞ 𝑔))'   

                                            = 𝑃 hQ𝐶,# ⊞𝑀-#R(𝑓. ⊞𝑔.)(𝑤)) − ((𝐶,# ⊞𝑀-#)	(	𝑓 ⊞ 𝑔)(𝑤))i
'
 

                                            = 𝑃 hQ𝐶,#𝑓. ⊞𝑀-#𝑔.R−(𝐶,#𝑓 ⊞𝑀-#𝑔)i'
 

                                            ≤ �∫*(𝑣(𝑤)𝑞(𝑓.(𝜑+(𝑤)) − 𝑓(𝜑+(𝑤)))𝑒
|+|‖/‖'𝑞(𝑔.(𝑤)))%𝑑𝜇)

!
"�         

        +�∫*(𝑣(𝑤)𝑞(𝑓(𝜑+(𝑤)))[𝑒
|+|‖/‖'𝑔.(𝑤) − 𝑒|+|‖/‖'𝑔.(𝑤)])%𝑑𝜇)

!
"�                

                    → 0	𝑎𝑠	(𝑓. ⊞𝑔.) − (𝑓 ⊞ 𝑔) → 0. 

This proves the continuity of ∇/ is a (linear) dynamical system on the weighted space 𝑀𝑉&(ℝ, 𝑇) ⊞ 𝑀𝑉&(ℝ, 𝑇). 

1.4. Dynamical system and weighted tensor sum operator 

In this section, let us investigate the dynamical system and weighted tensor sum operator 
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Theorem:1.4.1. Let 𝐸 be a locally convex Hausdorff space such that each convergent net in 𝐸 is bounded. Let  𝜑: 𝑀(𝑋, 𝐵(𝐸)) and  𝑇 ∈
𝑀(𝑋, 𝑋). Then (𝐶, ⊞	𝑀-#)(𝑓	 ⊞ 𝑔	) is a weighted tensor sum operator on  𝑀𝑉&(𝑋, 𝐸) ⊞ 𝑀𝑉&(𝑋, 𝐸)  iff for every 𝑣 ∈ 𝑉 and 𝑝 ∈
𝑐𝑠(𝐸), there exists 𝑢 ∈ 𝑉 and 𝑞 ∈ 𝑐𝑠(𝐸) such that  𝑣(𝑥)𝑃(𝜑(𝑥)(𝑤)) ≤ 𝑢( 𝜋+(𝑥)𝑞(𝑥)v for all 𝑥 ∈ 𝑋 and 𝑤 ∈ 𝐸. 

Remark:1.4.2. Let 𝐵(𝐸) be the Banach algebra of all bunded linear operators on 𝐸. Then an operator-valued map  𝜋+ : 𝑋 → 𝐵(𝐸) 
defined by 𝜋+(𝑥) = 𝑒+/(1)  for all 𝑡 ∈ ℝ   and 𝑥 ∈ 𝑋 , where ℎ ∈ 𝑀(𝑋, 𝐵(𝐸))  and ‖ℎ‖A = 𝑠𝑢𝑝	{‖ℎ(𝑥)‖: 𝑥 ∈ 𝑋} . Also𝜑+: 𝑋 → 𝑋  is 
defined by  𝜑+(𝑥) = 𝑡 + 𝑥 the self-map. Then the weighted tensor sum operator induced by 𝜑+ and 𝜋+ on the spaces of 𝑀𝑉$(𝑋, 𝐸) and 
𝑀𝑉$(𝑋, 𝐸). 

Theorem:1.4.3. Let 𝑉 be an arbitrary system of weights on 𝑋. Let ∇:	ℝ	 × 𝑀𝑉&(𝑋, 𝐸) ⊞ 𝑀𝑉&(𝑋, 𝐸) → 𝑀(𝑋, 𝐸) ⊞ 	𝑀(𝑋, 𝐸) be the 
function defined by ∇(𝑡, 𝑓 ⊞ 𝑔) = 	 (𝐶,  ⊞	𝑀-#)(𝑓	 ⊞ 𝑔	) for all 𝑡 ∈ ℝ and 𝑓 ⊞ 𝑔 ∈ 	𝑀𝑉&(𝑋, 𝐸) ⊞ 𝑀𝑉&(𝑋, 𝐸).  Then ∇ is a linear 
dynamical system if for every 𝑣 ∈ 𝑉 and 𝑝 ∈ 𝑐𝑠(𝐸), there exists 𝑢 ∈ 𝑉 and 𝑞 ∈ 𝑐𝑠(𝐸) such that  𝑣(𝑥)𝑃(𝜑 ⊞ 𝜋+)(𝑥) ≤ 𝑢(𝜋+(𝑥)𝑞(𝑥)𝑣 
for all 𝑥 ∈ 𝑋 and 𝑤 ∈ 𝐸. 

Proof: 

For every 𝑡 ∈ ℝ and 𝐶, ⊞	𝑀-# is a weighted tensor sum operator on	𝑀𝑉&(𝑋, 𝐸) ⊞ 𝑀𝑉&(𝑋, 𝐸). Thus it follows that, 

∇(𝑡, 𝑓 ⊞ 𝑔) 	∈ 	𝑀𝑉&(𝑋, 𝐸) ⊞ 𝑀𝑉&(𝑋, 𝐸) for all 𝑡 ∈ ℝ and 𝑓 ⊞ 𝑔 ∈ 	𝑀𝑉&(𝑋, 𝐸) ⊞ 𝑀𝑉&(𝑋, 𝐸). 

Clearly, ∇ is linear and ∇(0, 𝑓 ⊞ 𝑔)(𝑥) = (𝐶, ⊞	𝑀-#)((	𝑓 ⊞ 𝑔)(𝑥)) for all 𝑥 ∈ 𝑋. 

    = (𝐶, 𝑓 ⊞	𝑀-#𝑔)(𝑥) 

    = 𝑓(𝜑(𝑥)) ⊞ 𝑒+/(1)𝑔(𝑥) 

    = (	𝑓 ⊞ 𝑔)(𝑥) 

Therefore ∇(0, 𝑓 ⊞ 𝑔)(𝑥) = 	𝑓 ⊞ 𝑔. 

Also ∇(𝑡 + 𝑠, 𝑓 ⊞ 𝑔) = 	∇(𝑡, ∇(𝑠, 𝑓 ⊞ 𝑔)). 

Next, to show that ∇ is a linear dynamical system, it is sufficient to show that ∇ is jointly continuous map[1]. Let 𝑡@ → 𝑡 for all𝑡 ∈ ℝ. 
Then 𝑡@ − 𝑡 → 0 as 𝑛 → ∞. The remaining proof is similar to theorem:1.5.4 
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