

The Hop domination number of comb product graphs

*D.Anusha, ¹S.Joseph Robin
*Department of Mathematics,
Arunachala Hitech College of Engineering,
Mullanganavilai,Karungal-629 195, India.
anushasenthil84@gmail.com

¹ Department of Mathematics,
Scott Christian College, Nagercoil-629 003, India.
dr.robinscc@gmail.com

Abstract

A set $S \subseteq V$ of a graph G is a hop dominating set of G if for every $v \in V - S$, there exists $u \in S$ such that d(u, v) = 2. The minimum cardinality of a hop dominating set of G is called the *hop domination number* and is denoted by $\gamma_h(G)$. Any hop dominating set of order $\gamma_h(G)$ is called γ_h -set of G. In this paper we studied the concept of the hop domination number of comb product of some standard graphs.

Keywords: hop domination number, domination number, comb product.

AMS Subject Classification: 05C12, 05C69.

1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology, we refer to [4]. For every vertex $v \in V$, the open neighborhood N(v) is the set $\{u \in G/uv \in E(G)\}$. The degree of a vertex $v \in V$ is deg(v) = |N(v)|. If $e = \{u, v\}$ is an edge of a graph G with deg(u) = 1 and deg(v) > 1, then we call e a pendant edge or end edge, u a leaf or end vertex and v a support. A vertex of degree n-1 is called a universal vertex. The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u-v path in G. An u - v path of length d(u, v) is called a u-v geodesic. A vertex x is said to lie on a u-v geodesic P if x is a vertex of P including the vertices u and v. For two vertices u and v, the closed interval I[u, v] consists of u and v together with all vertices lying on some u-v geodesic. For a set $S \subseteq V(G)$, in the interval $I_G[S]$ is the union of all $I_G[u, v]$ for u, $v \in S$.

A set $D \subset V$ is a dominating set of G if every vertex $v \in V - D$ is adjacent to some vertex in D. A dominating set D is said to be minimal if no subset of D is a dominating set of G. The minimum cardinality of a minimal dominating set of G is called the domination number of G and is denoted by G. The domination number of a graph was studied in [6]. A set $G \subseteq V$ of a graph G is a hop dominating set (hd-set, in short) of G if for every G is called the hop domination number and is denoted by G is called the hop domination number and is denoted by G is called the hop domination number of a graph was studied in [1-3,7-9]. The dominating concept have interesting applications in social networks. By applying the hop dominating concept, we can improve the privacy in social networks.

Let G and H be two connected graphs. Let o be a vertex of H. The comb product between G and H denoted by $G \triangleright H$, is a graph obtained by taking one copy of G and |V(G)| copies of H and identifying the i^{th} -copy of H at the vertex o to the i^{th} -vertex of G. By the definition of comb product, we can say that $V(G \triangleright H) = \{(a,u): a \in V(G), u \in V(H)\}$ and $(a,u)(b,v) \in E(G \triangleright H)$ whenever a=b and $uv \in E(H)$ or $ab \in E(G)$ and u=v=o. That concepts were studied in [5].

2. Hop domination number of comb product graphs

Theorem 2.1. Let $H=P_{n_1}$ be the path of order n_1 and $K=C_{n_2}$ be the cycle of order n_2 . Then

$$\gamma_h(H \rhd K) = \begin{cases} n_1 & \text{if } n_2 = 4 \text{ or } 5 \\ n_1 \left\lceil \frac{n_2}{3} \right\rceil & \text{if } n_2 = 6r \text{ or } 6r + s, 1 \leq s \leq 3 \\ n_1 \left\lfloor \frac{n_2}{3} \right\rfloor & \text{if } n_2 = 6r + 4 \text{ or } 6r + 5, r \geq 1 \end{cases}.$$

Proof: Let $V(H) = \{v_1, v_2, ..., v_{n_1}\}$ and $V(K) = \{u_1, u_2, ..., u_{n_2}\}$. Let $V(K_i) = \{u_{i,1}, u_{i,2}, ..., u_{i,n_2}\}$ be the ith-copy of K and $u_{i,1} (i \le i \le n_1)$ be the root vertex of $G = H \triangleright K$.

Case 1: $4 \le n_2 \le 5$. Let S be a γ_h -set of G. It is easily observed that each root vertex belongs to S.Then $\gamma_h(G) \ge n_1$. Since $S = \{u_{1,1}, u_{2,1}, u_{3,1}, \dots, u_{n_1,1}\}$ is the only γ_h -set of G so that $\gamma_h(G) = n_1$.

Case $2:n_2 \ge 6$.

Case $2a: n_2 = 6r$. Let $S = \{u_{i,1}, u_{i,4}, u_{i,7}, u_{i,10}, \dots, u_{i,6r-2}\}$. Then S is the hop dominating set of G so that $\gamma_h(G) \leq n_1 \left\lceil \frac{n_2}{3} \right\rceil$. We have to prove that $\gamma_h(G) = n_1 \left\lceil \frac{n_2}{3} \right\rceil$. On the contrary, suppose that $\gamma_h(G) \leq n_1 \left\lceil \frac{n_2}{3} \right\rceil$ -1. Then there exists a γ_h -set S' of G such that $|S'| \leq n_1 \left\lceil \frac{n_2}{3} \right\rceil$ -1. Hence there exists a $x \in V \setminus S'$ such that $d(x,y) \geq 3$, where $y \in S'$. Therefore S' is not a hop dominating set of G, which is a contradiction. Hence $\gamma_h(G) = n_1 \left\lceil \frac{n_2}{3} \right\rceil$.

Case 2b: $n_2 = 6r + 1$ or 6r + 2 or 6r + 3. Let $T = \{u_{i,1}, u_{i,4}, u_{i,10}, \dots, u_{i,6r-2}\}$. $\{u_{i,5}, u_{i,11}, \dots, u_{i,6r-1}\}$. Then as in Case 2a, we can prove that T is a γ_h -set of G so that $\gamma_h(G) = n_1 \left[\frac{n_2}{3}\right]$.

Case 2c: $n_2 = 6r + 4 \text{ or } 6r + 5$. Let $W = \{u_{i,1}, u_{i,6}, u_{i,12}, \dots, u_{i,6r}\} \cup \{u_{i,7}, u_{i,13}, \dots, u_{i,6r+1}\}$. Then as in Case 2a, we can prove that W is a γ_h -set of G so that $\gamma_h(G) = n_1 \left\lfloor \frac{n_2}{3} \right\rfloor$.

Theorem 2.2. Let $H=P_{n_1}$ be the path of order $n_1 \ge 2$ and $K=P_{n_2}$ be the path of order $n_2 \ge 3$.

$$\operatorname{Then} \gamma_h(H \rhd K) = \begin{cases} n_1 & \text{if } n_2 \geq 3 \\ 2n_1 & \text{if } n_2 = 4 \text{ or } 5 \end{cases}$$

$$n_1 \left\lceil \frac{n_2}{3} \right\rceil & \text{if } n_2 = 6r \text{ or } 6r + s, 1 \leq s \leq 3$$

$$n_1 \left(\left\lceil \frac{n_2}{3} \right\rceil + 1 \right) & \text{if } n_2 = 6r + 4 \text{ or } 6r + 5, r \geq 1$$

Proof: Let $V(H)=\{v_1,v_2,\ldots,v_{n_1}\}$ and $V(K)=\{u_1,u_2,\ldots,u_{n_2}\}$. Let

 $V(K_i) = \{u_{i,1}, u_{i,2}, \dots, u_{i,n_2}\}$ be the i^{th} -copy of K and $u_{i,1} (i \le i \le n_1)$ be the root vertex of $G = H \triangleright K$.

Case 1: $1 \le n_2 \le 3$

Case 1a: $n_2 \ge 3$. Then S= $\{u_{1,1}, u_{2,1}, u_{3,1}, \dots, u_{n_1,1}\}$ is the only γ_h -set of G so that $\gamma_h(G) = n_1$.

Case 1b: $4 \le n_2 \le 5$

Then $S = \{u_2, u_3\}$ is the only γ_h -set of G so that $\gamma_h(G) = 2n_1$.

Case 2: $n_2 \ge 6$.

Case $2a: n_2 = 6r$. Let $S = \{u_{i,3}, u_{i,9}, \dots, u_{i,6r-3}\} \cup \{u_{i,4}, u_{i,10}, \dots, u_{i,6r-2}\}$. Then S is the hop dominating set of G so that $\gamma_h(G) \leq n_1 \left\lceil \frac{n_2}{3} \right\rceil$. We have to prove that $\gamma_h(G) = n_1 \left\lceil \frac{n_2}{3} \right\rceil$. On the contrary, suppose that $\gamma_h(G) \leq n_1 \left\lceil \frac{n_2}{3} \right\rceil - 1$. Then there exists a γ_h -set S' of G such that $|S'| \leq n_1 \left\lceil \frac{n_2}{3} \right\rceil - 1$.

 $n_1\left\lceil\frac{n_2}{3}\right\rceil$ -1. Hence there exists a $x \in V \setminus S'$ such that $d(x,y) \geq 3$, where $y \in S'$. Therefore S' is not a hop dominating set of G, which is a contradiction. Hence $\gamma_h(G) = n_1\left\lceil\frac{n_2}{3}\right\rceil$.

Case 2b: $n_2 = 6r + 1$ or 6r + 2 or 6r + 3.Let $T = \{u_{i,1}, u_{i,6}, u_{i,12}, ..., u_{i,6r}\} \cup \{u_{i,7}, u_{i,13}, ..., u_{i,6r+1}\}$. Then as in Case 2a, we can prove that T is a γ_h -set of G so that $\gamma_h(G) = n_1 \left[\frac{n_2}{3}\right]$.

Case 2c: $n_2 = 6r + 4$. Let $W = \{u_{i,1}, u_{i,4}, u_{i,7}, ..., u_{i,6r+4}\}$. Then as in Case 2a, we can prove that W is a γ_h -set of G so that $\gamma_h(G) = n_1 \left(\left\lceil \frac{n_2}{3} \right\rceil + 1 \right)$.

Case 2d: $n_2 = 6r + 5$. Let $Z=W \cup \{u_{i,6r+5}\}$. Then as in Case 2a, we can prove that Z is a γ_h -set of G so that $\gamma_h(G) = n_1\left(\left\lceil \frac{n_2}{3}\right\rceil + 1\right)$.

Theorem 2.3. Let H and K be two connected graphs. Then $\gamma_h(H \rhd K) \leq |V(H)| \cdot \gamma_h(K)$ **Proof.** Let $V(H) = \{v_1, v_2, ..., v_{n_1}\}$ and $V(K) = \{u_1, u_2, ..., u_{n_2}\}$.

Let $V(K_i) = \{u_{i,1}, u_{i,2}, \dots, u_{i,n_2}\}$ $(i \le i \le n_1)$ be the i^{th} -copy of K. Without loss of generality, let us assume that $u_{i,1} (i \le i \le n_1)$ be the root vertex of $G = H \triangleright K$. Let S be a γ_h -set of G. Then $\gamma_h(H \triangleright K) \le |V(H)|$. |S| = |V(H)|. $\gamma_h(K)$.

Theorem 2.4. Let H be a connected graph of order n_1 and and K be a connected graph of order n_2 with d(K)=2. Then $\gamma_h(H \triangleright K)=n_1$.

Proof. Let $V(H) = \{v_1, v_2, \dots, v_{n_1}\}$ and $V(K) = \{u_1, u_2\}$. Let $V(K_i) = \{u_{i,1}\}$ be the ith-copy of K and $u_{i,1} (I \le i \le n_1)$ be the root vertex of $G = H \rhd K$. We prove that $\gamma_h(G) = n_1$. On the contrary suppose that $\gamma_h(G) \le n_1 - 1$. Then there exists a γ_h -set S' of G such that $|S'| \le n_1$ -1. Hence there exists a $x \in V \setminus S'$ such that $d(x,y) \ge 3$, where $y \in S'$. Therefore S' is not a hop dominating set of G, which is a contradiction. Hence $\gamma_h(H \rhd K) = n_1$.

Theorem 2.5. Let H be any connected graph of order n_1 and and K be a connected graph of

order
$$n_2$$
 with $d(K)=1$. Then $\gamma_h(H \triangleright K) = \begin{cases} 2 & \text{if } n_1 = 3 \\ \left\lceil \frac{n_1}{2} \right\rceil & \text{if } n_1 = 4r \text{ or } 4r + 1 \text{ or } 4r + 3 \\ \left\lceil \frac{n_1}{2} \right\rceil + 1 & \text{if } n_1 = 4r + 2, r \ge 1 \end{cases}$

Proof: Let $V(H) = \{v_1, v_2, ..., v_{n_1}\}$ and $V(K) = \{u_1, u_2\}$. Let $V(K_i) = \{u_{i,1}\}$ be the ith-copy of K and $u_{i,1}(1 \le i \le n_1)$ be the root vertex of $G = H \triangleright K$.

Case 1: $n_1 = 3$. Then S= $\{u_{2,1}, u_{3,1}\}$ is the only γ_h -set of G so that $\gamma_h(G)=2$.

Case 2: $n_1 \ge 4$.

Case $2a:n_1 = 4r$. Let $S = \{u_{2,1}, u_{6,1}, \dots, u_{4r-2,1}\} \cup \{u_{3,1}, u_{7,1}, \dots, u_{4r-1,1}\}$. Then S is the hop dominating set of G so that $\gamma_h(G) \leq \left\lceil \frac{n_1}{2} \right\rceil$. We have to prove that $\gamma_h(G) = \left\lceil \frac{n_1}{2} \right\rceil$. On the contrary, suppose that $\gamma_h(G) \leq \left\lceil \frac{n_1}{2} \right\rceil$ -1. Then there exists a γ_h -set S' of G such that $|S'| \leq \left\lceil \frac{n_1}{2} \right\rceil$ -1. Hence there exists a $\chi \in V \setminus S'$ such that $d(\chi, \chi) \geq 3$, where $\chi \in S'$. Therefore S' is not a hop

1. Hence there exists a $x \in V \setminus S'$ such that $d(x,y) \ge 3$, where $y \in S'$. Therefore S' is not a hop dominating set of G, which is a contradiction. Hence $\gamma_h(G) = \left\lceil \frac{n_1}{2} \right\rceil$.

Case 2b: $n_1 = 4r + 1$ Let $T = S \cup \{u_{4r,1}\}$. Then as in Case 2a, we can prove that T is a γ_h -set of G so that $\gamma_h(G) = \left\lceil \frac{n_1}{2} \right\rceil$.

Case 2c: $n_1 = 4r + 3$. Let W= $\{u_{2,1}, u_{6,1}, \dots, u_{4r+2,1}\} \cup \{u_{3,1}, u_{7,1}, \dots, u_{4r+3,1}\}$. Then as in Case 2a, we can prove that W is a γ_h -set of G so that $\gamma_h(G) = \left\lceil \frac{n_1}{2} \right\rceil$.

Case 2d: $n_1 = 4r + 2$. Let $W = \{u_{21}, u_{61}, \dots, u_{4r-21}\} \cup \{u_{31}, u_{71}, \dots, u_{4r-11}\} \cup \{u_{4r1}, u_{4r+11}\}$. Then as in Case 2a, we can prove that W is a γ_h -set of G so that $\gamma_h(G) = \left\lceil \frac{n_1}{2} \right\rceil + 1$.

Corollary 2.6. Let $H=P_{n_1}$ be the path of order n_1 and $K=K_{1,n_2}$ be the path of order n_2 .

Then
$$\gamma_h(H \triangleright K) = \begin{cases} 2 & \text{if } n_1 = 3\\ \left\lceil \frac{n_1}{2} \right\rceil & \text{if } n_1 = 4r \text{ or } 4r + 1 \text{ or } 4r + 3\\ \left\lceil \frac{n_1}{2} \right\rceil + 1 & \text{if } n_1 = 4r + 2, r \ge 1 \end{cases}$$

Theorem 2.7. Let H and K be two connected graphs of orders n_1 and n_2 respectively. Then $\gamma_h(H \rhd K) = 2$ if and only if H is K_2 and $d(K) \leq 2$.

Proof. Let $G = H \triangleright K$ and $\gamma_h(G) = 2$. Hence it follows from Theorem2.2, that $n_1 = 2$. Therefore $H = K_2$. Since $\gamma_h(G) = 2$, S = V(H). Let $V(K) = \{u_1, u_2, ..., u_{n_2}\}$ and $V(Ki) = \{u_{i,1}, u_{i,2}, ..., u_{i,n_2}\}$ ($i \le i \le n_1$) be the i^{th} -copy of K. We have to prove that $d(K) \le 2$. On the contrary, supposet that $d(K) \ge 3$. Let $P : x_1, x_2, ..., x_k$ ($k \ge 3$) be a diametral path in K and $P_i : x_{i,1}, x_{i,2}, ..., x_{i,k}$ ($1 \le i \le n_2$) be a diametral path in K_i . Then there exists $x_{ij}' \in V(P_i)$ such that either $d(x, x_{ij}') \ge 3$ or $d(y, x_{ij}') \ge 3$, which is a contradiction. Therefore $d(K) \le 2$.

 $\gamma_h(H \rhd K) = 2$ if and only if H is K_2 and K is K_{1,n_2} .

Corollary 2.9. Let H and K be two connected graphs of orders n_1 and n_2 respectively. Then $\gamma_h(H \triangleright K) = 2$ if and only if H is K_2 and K is either C_3 or C_4 or C_5 .

Theorem 2.10. Let H be a connected graph of order n_1 and K be a connected graph of order

LIPS
JOURNAL
We value your Innovation

LIPS International Journal of Interdisciplinary Research Volume 1, Issue 2, October 2024 - SPECIAL ISSUE Proceedings ISBN 978-93-94174-47-4 "International Conference on interdisciplinary research, education and job scope

 n_2 with $d \ge 3$. Then $S \subseteq V(K_i)$, for all $i \ (i \le i \le n_2)$.

Proof. We prove that $S \subseteq V(K_i)$, for all i ($i \le i \le n_2$). On the contray suppose that $S \not\subset V(K_i)$, for all i ($i \le i \le n_2$). Let $P: x_1, x_2, ..., x_k$ ($k \ge 3$) be a diametral path in K and $P_i: x_{i,1}, x_{i,2}, ..., x_{i,k}$ ($1 \le i \le n_2$) be a diametral path in K_i . If $S \subseteq V(H)$, then there exists a $x_{ij} \in K_i$ such that $d(S, x_{ij}) \ge 3$, which is a contradiction. Hence $S \subseteq V(K_i)$, for all i ($i \le i \le n_2$).

References

- [1] D.Anusha, J.John and S.Joseph Robin, Graphs with small and large hop domination numbers, Bulletin of IMVI, 11(3), (2021), 483-489.
- [2] D.Anusha and S.Joseph Robin, The geodetic hop domination number of a graph, (communicated).
- [3] D.Anusha, J.John and S.Joseph Robin, The geodetic hop domination number of complementary prisms, Discrete Mathematics, Algorithms and Applications, 2021, 2150077, 15 pages.
- [4] F.Buckley and F.Harary, Distance in Graph, Addition-Wesly-wood city, CA (1990).
- [5] Darmaji and Ridho Alfarisi, On the partition of comb product of path and complete graph, International Computation AIP conf. Proc,1867,020038-1-020038-7: doi:10.1063/14994441
- [6] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
- [7] S.M. Meera Rani and T.Hemalatha, Hop graph of a graph, International Journal of Informative and Futuristic Research, 3(9), (2016), 3375-3384.
- [8] Michael A.Henning and Nader Jafari Rad, On 2-step and hop dominating sets in graphs, Graphs and Combinatorics, 33,(2),(2017), 1-15.
- [9] C. Natarajan and S.K.Ayyaswamy, Hop domination sets in graphs-II, Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, (ASUOC), 23(2), (2015),187-199.