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Abstract 

                 A topological index has a vital role in molecular chemistry. There are various topological descriptors in theoretical 

chemistry in particular; degree- based topological indices, distance-based, eccentricity- based and counting related indices 

of graphs. In this paper, we have obtained analytical expressions for various variants of eccentricity based indices such as 

first and second multiplicative Zagreb eccentricity indices, total eccentric index, connective eccentric index, Ediz eccentric 

connectivity index, modified and augmented eccentric connectivity indices and their respective polynomials of  polygonal 

cylinder. 
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I. INTRODUCTION 

In recent years graph theory is substantially used in the branch of mathematical chemistry due to the fact this idea 

is associated with the realistic purposes of graph theory for solving the molecular problems. Over the years topological 

indices like Wiener index, Balaban index, Hosoya index, Randic index and so on have been studied significantly improved 

and currently the research and attention in this area has been accelerated exponentially. Throughout this paper we will focus 

on finite, simple and connected graphs. Let ))(),(( GEGVG =  be a graph with )(GV  is a set of all vertices and )(GE is a set 

of all edges. The degree of v, denoted by )deg(v or )(vd , is the number of edges incident with v in G . The eccentricity )(v  

of a vertex )(GVv  is the maximum distance from v to any other vertex. The goal of this paper, to determine various 

eccentricity based indices of the polygonal cylinder. Nilanjan De[8] in 2012 defined first and second multiplicative Zagreb 

eccentricity indices as: 
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  The total eccentricity of a graph G  is denoted by )(G  is the sum of eccentricities of all vertices of a given graph G . 

Sharma et.al[9]  introduced eccentric connectivity index and is interpreted as: 
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In 2000, Gupta et.al. [6] defined connective eccentric index  as: 
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A. R. Ashrafi and M. Ghorbani[2] in 2010 defined modified eccentric connectivity index  as: 




=

)(

),()(

GVv

vvc SG                       (4) 

where vS  is the sum of degrees of all vertices adjacent to vertex v . 

Ediz eccentric connectivity index of G  is defined by S. Ediz et al. [5] in 2010. It is interpreted as: 
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Dureja, Madan[4] introduced augmented eccentric connectivity index of graph G. It is defined as:   
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where vM  is the product of degrees of all neighbors of vertex v  of G . 

Modified augmented eccentric connectivity index is proposed by M. Naeem et.al. [7] in 2018 and it is defined as: 
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The corresponding topological polynomials of Eq. (4) and Eq.(7) are displayed below: N. De et.al. [3] in 2014 defined 

modified eccentric connectivity polynomial as: 
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The first derivative of Eq. (8) at 1=x  is the modified eccentric connectivity index. M. Naeem et.al[7] in 2018 defined 

modified augmented eccentric connectivity polynomial as: 
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2. POLYGONAL CYLINDER 

Abdul  Rauf  Nizami[1]  in 2010 defined polygonal cylinder mnC , . Consider two copies of paths 3, nPn  with vertices 

nuuu ,...,, 21   and nvvv ,...,, 21   respectively. The Cartesian product nn PP   is defined by identify the vertices 

),(),...,,(),,( 12111 nvuvuvu  with the vertices ),(),...,,(),,( 21 nnnn vuvuvu   and the edge ),(),,( 111 +ii vuvu  with the edge

),(),,( 1+inin vuvu  , where ni 1  . The resultant graph thus obtained is polygonal cylinder or )1( −n  -gonal cylinder. It is 

denoted by nnC , . The graph nnC ,  consists of )1( −nn vertices and )]1)(12[( −− nn  edges. Figure 1. is the 3-gonal cylinder. 

 

 

 

 

 

 

 

 

 

 

 

                        

 

  Figure 1. Grid  44 PP      Figure. 2 Polygonal cylinder 4,4C  
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3. MAIN TITLE 

We determine various eccentricity based indices and their respective polynomials of the polygonal cylinder. 

 

 

3.1 First multiplicative Zagreb eccentricity index of the polygonal cylinder nnC ,   
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This result is true for all .4n   If n  is odd, )1( −n   vertices has eccentricity )1( −n  ; )22( −n  vertices 
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This result is true for all .5n  
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3.2 Second multiplicative Zagreb eccentricity index of the polygonal cylinder nnC ,  

For even n, second multiplicative Zagreb eccentricity index can be computed as follows:  (2n−2) vertices 






 −

2

1n

set of times has eccentricity )1( −+ kn , for 1=k to 
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; )33( −n vertices has eccentricity )1( −n ; (2n−2) vertices 




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 −

2

1n

set of times has eccentricity of the form =)()( vu  )2)(1( −+−+ knkn , for 1=k to 




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 −

2

1n
. Using Eq. (1) we have, 
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This is true for all 4n . Similarly the result follows for odd 5n .  
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3.3 Total eccentricity index of polygonal cylinder nnC ,  
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Hence the result. 

3.4  Eccentric connectivity index and connective eccentric index of polygonal cylinder nnC ,   

Using Eq. (2) we have, 


=

)(

)(

GVv

uudG  . In this graph, )22( −n vertices have degree 3 and eccentricity 







−+ 2

2

n
n ; 

again )22( −n  vertices 







−1

2

n
times has degree 4 and eccentricity ( ) 0,1 =−+ kkn  to 








− 2

2

n
 for even n. Similarly, for odd 

n: )22( −n  vertices have degree 3 and eccentricity 







−








+ 1

2

n
n  ; again )22( −n   vertices 








−








1

2

n
 times has degree 4 and 

eccentricity ( ) 0, =+ kkn  to 







−








2

2

n
; 4 vertices have degree )1( −n  and eccentricity )1( −n . Hence, 



LIPS International Journal of Interdisciplinary Research Volume 1, Issue 2, October 2024 - SPECIAL ISSUE        
           

Proceedings ISBN 978-93-94174-47-4 “International Conference on interdisciplinary research, education and job scope        

    

 

 

5 
 

( ) 

( ) 














+−+−−+




















−








+−

−+−+















−+−

=





−








=

−

=

2
2

0

2
2

0

.;.4)22()1)(1.(41
2

.3)22(

;1.4)22(2
2

.3)22(

)(
n

k

n

k

oddisnifknnnn
n

nn

evenisnifknn
n

nn

G   

Using the above index, we can compute connective eccentric index. Since by Eq. (3), we have  
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Hence the result. 

3.5 The modified eccentric connectivity index and Ediz eccentric connectivity index of polygonal cylinder nnC ,   
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We can compute Ediz eccentric connectivity index )(GcE  by using modified eccentric connectivity index of nnC , . We have 
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Hence the Proof. 
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Using the above result, we can compute modified augmented eccentric connectivity index. By Eq. (7), we have 
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Also, we can compute modified augmented eccentric connectivity polynomial
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Hence the result. 
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